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In this resource article, an exceptional
bubble chamber picture—showing the
annihilation of a positron (antielectron e +)
in flight—is discussed in detail. Several
other esoteric phenomena (some not easy
to show on their own!) also manifest
themselves in this picture— pair creation
or the materialization of a high energy
photon into an electron–positron pair; the
‘head-on’ collision of a positron with an
electron, from which the mass of the
positron can be estimated; the Compton
Effect ; an example of the emission of
electromagnetic radiation (photons) by
accelerating charges ( bremsstrahlung ).

It is hoped that this article can be useful on several
levels.

• Bubble chamber pictures demonstrate in a
believable way the ‘reality’ of esoteric phenomena
taking place in a few billionths of a second. The
pictures also have a mysterious beauty.
• Elementary physics concepts—such as

Newton’s Second Law, momentum and energy
conservation, the forces exerted by magnetic fields
on electric currents (moving charges), the fact
that the origin of electromagnetic radiation is
accelerating charges—are seen to be relevant in
the exotic interactions created in particle physics.

These same interactions played a crucial part
in the early universe. If particles did not have the
properties they do, atoms as we know them would
not exist. Neither would we!

Such considerations show how important an
appreciation of basic science is to our culture, and
should be included in our science education. It is
also important to the self-esteem of young people

to know that what they are studying has a deep
connection with the meaning of human life.
• Many teachers and bright students visiting

the School of Physics and Astronomy at the
University of Birmingham have commented that
they would like detailed discussions of particle
interactions, to consolidate their reading of popular
books and articles. Some, sadly, even feel
somewhat alienated by popularizations.

There is something very satisfying about
seeing how straightforward relativistic kinematics
describes particle phenomena. However, the
algebra, although made up of simple steps, is
sometimes rather longer than is usual at A-level.
Here, every step is explained.
• The material presented here could be used

in conjunction with various first-year university
courses.
• Several problems are set and solutions

provided (or referenced).

The article is planned as follows:

1. What is particle physics?
2. The bubble chamber.
3. A detailed qualitative description of a variety

of features of one exceptional bubble chamber
picture.

4. Summary of relevant relativistic kinematics.
5. A detailed discussion of positron annihilation

in flight.

What is particle physics?

The aim of particle physics is to study the
fundamental building blocks of nature and the
forces they exert on each other. The experimental
side of this subject consists of examining what
happens when particles are made to collide at
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high energies atacceleratorcentres such as CERN
(the European Laboratory for Particle Physics) in
Geneva and Fermilab near Chicago. The particles
emerging from such collisions are recorded in
instruments calleddetectors.

In this article, we consider a side-show, and
discuss in isolation a small part of the final state
of a high energy interaction, in a bubble chamber,
between a neutrino and a neutron or proton inside
a neon nucleus.

The bubble chamber (as an example of
a detector)

If two aeroplanes with vapour trails behind them
were to approach each other, circle around, and
then go their separate ways, the fact that they
had done so would be apparent for quite a while.
A permanent record of the encounter could be
obtained by taking a photograph of the vapour
trails.

A particle detector is an instrument that can
record the passage of particles through it. From
a teaching point of view, thebubble chamberis a
particularly valuable detector because it provides
a picture of the trajectories of charged particles
travelling through it; the dark lines in figure 1
(more later) are examples.

The bubble chamber [1–4], invented by
Donald A Glaser, consists of a tank of unstable
transparent liquid—a superheated (roughly 2:1)
mixture of neon and hydrogen in our case. When a
chargedparticle forces its way through this liquid,
the energy deposited initiates boiling along the
trajectory—leaving a trail of tiny bubbles†. The
superheated liquid is prepared by starting with the
liquid held under pressure (about 5 atmospheres at
a temperature of about 30 K for the Ne–H2 mix)
and then, just before the beam particles arrive,
the pressure is reduced by suddenly expanding the
volume by about 1% by means of a piston.

After the particles have passed through the
liquid, the bubbles are allowed to expand until they
are a few tenths of a millimetre across, big enough
to be photographed by flash illumination. It is
interesting to imagine the time scales involved: the
relativistic particles cross the few metres of liquid

† The force responsible for the energy loss is the so-called
Coulomb force (first published by Joseph Priestley, more
renowned for his discovery of oxygen; see [5]).

in a few nanoseconds (1 ns = 10−9 s); the growth
time is about a million times longer,∼ 10 ms.

Once the photographs are taken (more than
one view is needed to reconstruct an interaction in
3D), the bubbles are collapsed by recompressing
the liquid, and the bubble chamber is prepared for
the next burst of beam particles.

The great advantage of bubble chambers is
their ability to pick up details of complicated
interactions—by following the trails of bubbles
one can see subsequent interactions and decays of
the products of the initial interaction.

Sadly, bubble chambers have recently become
extinct. They could not cope with the huge
event rates of current fixed-target experiments;
nor could they be used with colliding beams.
Nevertheless, like dinosaurs, they are remembered
fondly! They served the particle physics
community for 40 years. As experiments grew,
needing millions of photographs to address current
issues, larger groups of (about 10) collaborating
laboratories emerged, paving the way for the
huge collaborations of today’s experiments—
which typically involve about a thousand scientists
from over a hundred laboratories around the world.

But, most of all, bubble chambers are
remembered for their enduring images.

An exceptionally rich bubble chamber
picture

Figure 1 shows part of a bubble chamber picture
of an interaction between a high energy neutrino
beam particle and a neon nucleus. The dark lines
are the bubble trails; they are curved because
the liquid is enclosed by a powerful magnet, the
direction of the magnetic field being such that
negative particles turn to the right. (Remember:
neutral particles do not leave trails of bubbles
because it is the electric force between the moving
particle and the electrons of the atoms of the liquid
that initiates bubble growth.)

Let us examine the picture closely.

• Several lines coming in from the bottom can
be seen to be diverging; they are coming from
the neutrino interaction, way upstream of the
picture. (Look at the orientation of the lettering
to determine top and bottom!)

• Some tracks are more curved than others. We
shall now show thatthe more curved the track,
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Figure 1. Part of a bubble chamber picture. The dark lines are trails of tiny bubbles created as charged
particles force their way through a tank of transparent liquid enclosed in a powerful magnet. At P, the
main point of interest, a positron (antielectron) in flight meets an electron and annihilation takes place.
One of the photons from the annihilation materializes at Q. At E, a different positron seems to change
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its sign. What has happened is that it has collided head-on with a stationary electron and has transferred
all (within errors) its momentum to the electron. This shows that (within errors) the positron has the same
mass as the electron. (This picture, from experiment E632 performed at the Fermilab 15 ft (4.6 m) bubble
chamber, was found at the University of Birmingham. Graphics by Ivor Hayes.)
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the lower the momentum of the particle that
made it.

A particle of chargeq travelling through a
magnetic fieldB with a speedv experiences a
force at right angles to its motion, given byBqv
if the motion is perpendicular to the field. This
makes the particle follow a circular path of radius
r, the motion being described by

Bqv = mv2

r
. (1)

Rearranging this gives

p = (Bq)r. (2)

This tells us that for a given fieldB and charge
q, the momentump is proportional to the radius
of curvaturer. This equation is valid in both non-
relativistic and relativistic situations.

Here, nature has been kind: all charged
particles that live long enough to travel a
measurable distance have a charge equal or
opposite to that on the electrone (= −1.6×10−19

coulomb).

– Example 1. In the Fermilab 15 ft (4.6 m)
diameter bubble chamber, where this picture
was taken, the magnetic field was 3 T (the
Earth’s magnetic field at the surface near the
magnetic north pole is 6.2× 10−5 T).
Working in SI units, show that the momentum
of a particle travelling with a radius of
curvature of 1.11 m is 5.33× 10−19 kg m s−1.

– Solution. Using (2),

p = 3 T× (1.6× 10−19) C× 1.11 m

= 5.33× 10−19 kg m s−1.

[Aside. In the units used by particle physicists,
this momentum is 1 GeV/c.]

• Electrons spiralling due to ‘bremsstrahlung’.
At several places, marked A, a low momentum
negative track (it curls to the right) can be
seen, beginning on a track of much higher
momentum. These are electrons that have been
‘struck’ (remember, it is really the Coulomb force)
by the passing charged particle, which is much
more massive than the electron.

It is important to notice how these electron
tracks spiral in, showing that they lose their energy
at a considerable rate as they travel. This is in
contrast to the massive particles that have struck

them. This is due to the fact that, apart from losing
energy by creating bubbles, electrons lose energy
much more quickly by another process, known as
bremsstrahlung(braking radiation).

This process, which is a consequence of
the fact that all accelerated charges radiate, is
important for electrons because they have small
masses. One can argue as follows: for a particle
of given charge, the amount of energy lost by
bremsstrahlung depends on its acceleration; the
acceleration is provided by the electric field due
to the nuclei of the medium through which the
particle is moving; by Newton’s second law, the
acceleration for a given force varies inversely with
the mass. So, since the next lightest charged
particle after the electron is the muon, which is
over 200 times more massive, we do not expect
much bremsstrahlung from particles other than
electrons! (Especially since it is the square of the
mass that counts!)

The upshot of all this is that an electron
is instantly recognizable in our bubble chamber
because its track will spiral. (In passing, this
would not be true for a liquid hydrogen bubble
chamber because the singly charged nuclei do not
produce enough acceleration.)

• The Compton Effect. At several points, marked
B, a lone (spiralling) electron can be seen. This is
an electron that has been knocked out of an atom
by a high energy photon, orγ -ray. The photon
does not leave a track because it is electrically
neutral. Such electrons are calledCompton
electrons. Can you find any more ‘Comptons’?

• Particles and antiparticles. There are several
points, marked C (two special ones, D and Q,
will be discussed later), from which two spiralling
tracks, one positive and one negative, are seen
to emerge with zero opening angle. These are
high energy photonsmaterializing, in the field of a
nucleus, into a positron–electron (e+e−) pair. (See
[6] for detailed discussion.)

The first thing to note is that the positron
tracks look similar to the electron tracks apart from
curving in the opposite direction—they leave trails
of bubbles, they spiral; there is nothing mystical
about antimatter! An antiparticle has the opposite
value of charge (and other additive, conserved
quantities such as baryon number and lepton
number) to that of the corresponding particle.

There are several more examples ofmaterial-
izing photons in the picture; can you find some?
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• ‘Weighing an antielectron’. At the point
marked E, the positron track that left D seems to
change into a negative track of more-or-less the
same curvature (momentum). What has happened
is that the positron has made a head-on collision
with an electron, transferring what looks like all
its momentum to the electron—suggesting that
the mass of the positron is equal to that of the
electron. (Imagine collisions between snooker
balls: in head-on collisions, one ball can transfer
all its momentum to another. If, however, the
balls were of different masses—think of a lead
ball striking a polystyrene ball, or vice versa—
one would not observe the complete transfer of
momentum from one ball to another. See [7, 8]
for further details.)

Many thousands of bubble chamber pictures
were studied before this example was found.

• A strange particle! At the point marked V
we see something that looks like a high energy
photon materializing. However, following the
(straighter) negative track, we see that it ends
in an interaction from which a (dark) spray of
other tracks emerges. Electron tracks do not
interact in this way. Curvature measurements of
the tracks leaving V show that the interacting track
is a negative pion or antiproton from the decay
of a neutral strange particle (a K0 or 3̄) that
was created in the original neutrino interaction
upstream of our picture. Were it not for the
existence of this high energy strange particle, this
event would not have been analysed in detail,
and the rare positron phenomena discussed in this
paper would not have been found!

• A positron annihilates in flight. Finally we
come to themain feature to be discussed in
this article. At P, a positron annihilates in flight
with an electron, and a photon that is produced
materializes 11.5 cm away (in the bubble chamber)
at Q. This is another classic but rare signal of a
positron.

Looking at the annihilation closely, one gets
the impression that all of the momentum of the
positron (try to assess its curvature by eye) could
have gone into the photon (look at the curvature of
the tracks of the e+ and e− into which the photon
materializes).

Is this actually the case? We will see that,
within the limits of experimental error, the answer
is ‘Yes’, a result that is, however, not consistent

with relativity! The apparent conflict will then be
resolved by showing that a second photon—of low
enough energy to be accommodated by the errors
in the energy measurements—must be created in
the annihilation.

Details of measurement of bubble
chamber tracks

In analysis of bubble chamber pictures, the
momentum of a track is obtained by measuring, on
at least two views so as to be able to reconstruct in
three dimensions, the coordinates of several points
along a track. Because of measurement errors,
these point will not lie on a perfectly smooth curve.
The curve which bestfits through these points is
then calculated, together with errors which give
a feel for the spread of curves that could be
considered consistent with the measured points.
The radius of curvature (with error) of this curve
gives (via equation (2)) the momentum of the track
(with error).

In principle this is straightforward. In practice
it is a complicated procedure. For one thing,
the particles lose energy as they force their way
through the bubble chamber liquid; so they are
more curved at their ends than they are at their
beginnings; this must be taken into account.

In the case of light particles like electrons,
curvature changes due to bremsstrahlung are
unpredictable and often quite severe, making a
momentum measurement particularly difficult.

Using CERN’s state-of-the-art fitting program,
our momentum measurements for the e+ approach-
ing point P on the picture, and theγ coming from
P and materializing at Q, are 200±47 MeV/c and
265± 31 MeV/c respectively. (Systematic errors
are negligible in comparison with these large sta-
tistical errors, forced upon us by the short lengths
of track that can sensibly be used for measurement,
typically 5–10 cm.)

We see that, within our measurement errors,
the e+ has given all its momentum to the photon
that materializes about 11.5 cm along its line of
flight.

Investigating whether this is really what has
happened is the topic of the remainder of this
article. First we gather a few basic relationships
that describe the motion of particles moving with
speeds close to that of light.
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Some relativistic kinematics

In ordinary Newtonian mechanics, the kinetic
energy of a particle is given byp2/2m, obtained
by replacingv in mv2/2 by p/m.

In relativistic mechanics, the corresponding
formula is

E2 = p2c2+m2
0c

4. (3)

We see that the expression for energy has two
terms. Forp = 0 (a stationary particle)E = m0c

2:
a stationary particle has ‘rest’ energy by virtue of
its rest massm0.

For very high momenta, whenp2c2 � m2
0c

4,
E ≈ pc. (For photons,E = pc.)

The relation p2c2 � m2
0c

4 holds for the
particles discussed in this paper; they are ‘highly
relativistic’ particles. For example: the positron
approaching P has a momentum∼ 200 MeV/c
and a mass of 0.511 MeV/c2; so p2c2 ∼ 40 000
MeV2, while m2

0c
4 ∼ 0.25 MeV2.

[Aside. Although a 200 MeV positron is highly
relativistic, moving with a speedv of 99.999 67%
the speed of light, its energyE is roughly 500
times smaller than that of the 100 GeV electrons
and positrons made to collide head-on in large
storage ringexperiments such as LEP at CERN.
These LEP electrons move at 99.999 999 998 7%
the speed of light.

• Problem. Verify the above speeds.
Hint. SquareE = 1√

1−(v/c)2
m0c

2, which is the

relativistic version ofE = 1
2mv

2; replace [1−
(v/c)2] by (1 + v/c)(1 − v/c) ≈ 2(1 − v/c) for
v ≈ c, and rearrange to give

1− v
c
≈ 1

2

(m0c
2)2

E2
.

Use 0.511 MeV form0c
2 for the electron. It comes

out in a couple of lines.

For an introduction to the Large Electron
Positron collider LEP, see the website:

http://www.cern.ch/Public/ACCELERATORS/
LepAcc.html.

Did you know that the World Wide Web was
invented at CERN to help particle physicists
communicate with each other?! ]

• Another useful formula for the energy of a
relativistic particle relates the kinetic energy
T to the total energyE:

E = T +m0c
2. (4)

• Example 2. Show that for a highly relativistic
(T � m0c

2) particle

pc ≈ T +m0c
2. (5)

Solution. Equating expressions forE2 from
equations (3) and (4) yields

p2c2+m2
0c

4 = (T +m0c
2)2. (6)

Subtractingm2
0c

4 from both sides, using the
binomial theorem [(1+ x)−1/2 ≈ 1− x/2 for
small x], and taking square roots gives

pc =
√
T 2+ 2m0c2T = T

√
1+ 2m0c2

T

≈ T (1+m0c
2/T ) = T +m0c

2. (7)

Positron–electron annihilation to one
photon is impossible

This question is most simply addressed by
considering the possibility of producing, in a head-
on collision between an e− and an e+ having equal
but opposite momentum, a single photon.

Applying energy and momentum conservation,
one can see that the photon would have an energy
equal to the total energy of the incoming e−e+

pair and a momentum of zero. This isimpossible
because a photon’s energy and momentum are
related byE = pc.
[Aside. It is instructive for those new to
relativistic calculations to see how the same
problem, addressed in the rest frame of the e−,
say, yields the same answer, albeit in a physically
less transparent manner.

Consider a high energy positron of energy
E and momentump approaching a stationary†
electron of (rest) massm (figure 2). Let the
proposed single photonγ in the final state have
energyE′ and momentump′.

Figure 2 looks ‘wrong’ because we know
almost instinctively that momentum conservation
says that the photon’s momentum must be along
the direction of motion of the incoming e+, and
equal in magnitude to the momentum of the e+,
i.e. p′ = p.

† Compared with the speed of the highly relativistic incoming
positron, an electron in the bubble chamber can be taken to be
at rest.
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Figure 2. A positron e+ of energy E , momentum p and mass m approaches a stationary electron e− also
of mass m. It is hypothesised that, after their annihilation, a single photon γ of energy E ′ and momentum
p′ is created.
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Figure 3. A positron e+ of energy E , momentum p and mass m approaches a stationary electron e− also
of mass m. After their annihilation, two photons γi , i = 1, 2, are created with energies Ei , momenta pi and
directions θi with respect to that of the incident e+.

Energy conservation (relativistic) then gives

(p2c2+m2c4)1/2+m2c4 = pc. (8)

(Remember: positron and electron masses are
equal.)

Sincem is positive, the left-hand side of this
equation is clearly greater thanpc, the value of
the right-hand side. So, there is no value of
momentum that satisfies this equation, because
we have considered an impossible process: e+e−

annihilation cannot yield just one photon.
The physics is the same in both frames of

reference! ]

Usually, e+e− annihilation yields two photons,
which we shall refer to asγ1 andγ2 from now on.
(γ , pronounced ‘gamma’, is the third letter of the
Greek alphabet.)

Now we need to reconsider our bubble
chamber picture which, within measurement
errors, shows an annihilation in which the photon
takes up all the energy of the incoming e+.

Kinematics of e+e− annihilation in
flight

Let us ask a specific question:what is the
maximum fraction of the incoming positron’s
energy that can be taken up by the more
energetic of the two photons?(The photograph
suggests it could be 100%.)

Consider an e+ of energyE and momentump
approaching a stationary electron of massm (0.511
MeV/c2) from the left, producing two photons
with energiesE1 and E2, and momentap1 and
p2 (figure 3).

[Aside. Before reading on, the student should
spend a few moments looking at figure 3 and trying
to imagine what is going on, concentrating on how
γ1, say, could get a maximal share of the energy.

We will argue firstly that the best final state
for sharing the energy most unequally involvesno
motion perpendicular to that of the incoming
e+—because anysuch motion must involveγ2

having as much momentum asγ1 (conservation of
momentum at right angles to the e+ line of flight),
thus increasingγ2’s overall share.
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Next we need to persuade ourselves that this
means thatγ1 moves to the right in the laboratory,
and γ2 to the left; they cannot both be moving
to the right. We can see this by considering
the process in the centre-of-mass system, where
the right-moving e+ meets the left-moving e−,
which has an equal and opposite momentum. As
seen from the laboratory frame, this centre-of-mass
frame moves to the right (with a lower speed than
that of the e+).

By momentum conservation in the centre-of-
mass frame (sometimes known as the centre-of-
momentum frame),γ1 andγ2 must emerge back-
to-back with equal and opposite momentum.

Viewed from the laboratory, they will also be
back-to-back because, in moving from the CM
frame to the laboratory frame (boosting to the left),
we cannot catch up with the left-moving photon!
(They will not have equal and opposite momenta
in the laboratory.)

In summary: for aγ to have the maximum
(minimum) possible energy it must move to the
right (left) with θ = 0◦ (180◦).

We now proceed to calculate these maximum
and minimum energies. ]

From momentum conservation

p2 = p− p1. (9)

Energy conservation gives

E2 = E +mc2− E1. (10)

Squaring (9),

p2
2 = p2+ p2

1 ∓ 2pp1. (11)

The minus (plus) sign is forθ being 0◦ (180◦),
which corresponds to maximum (minimum)γ
energy.

Multiplying (11) by c2, usingE1 = p1c and
E2 = p2c for the photons, andE2 = p2c2 + m2c4

for the positron, we get

E2
2 = E2−m2c4+ E2

1 ∓ 2pcE1.

Squaring (10) gives

E2
2 = E2+m2c4+E2

1+2Emc2−2E1mc
2−2EE1.

Equating values ofE2
2 in the last two equations,

subtracting (E2+E2
1) from both sides, and bringing

terms containingE1 to the left-hand side, we have

E1(E +mc2∓ pc) = mc2(E +mc2).

Hence,

E1 = mc2(E +mc2)

E +mc2∓ pc . (12)

[Example 3 (for advanced students).Beginning
with figure 3, derive equation (12) by considering
(a) energy conservation and (b) momentum
conservation (there are components along, and
perpendicular to, the line of flight of the e+).

(This method is mathematically more elegant,
but provides less of the ‘feel’ that an experimen-
talist might prefer. Best is both!)

Solution. See Appendix. ]

We are now in a position to estimate the
maximum and minimum photon energies for our
annihilation of a highly relativistic positron in
flight. Using E = T + mc2 (equation (4)) we
can re-express (12) in terms of the kinetic energy
T :

E1 = mc2(T + 2mc2)

T + 2mc2∓√2mc2T + T 2
. (13)

This simplifies surprisingly nicely! Dividing
numerator and denominator by (2mc2 + T ) gives

E1 = mc2(
1∓ T

√
1+2mc2/T

T (1+2mc2/T )

)
= mc2

1∓ (1+ 2mc2/T )−1/2
. (14)

ForT � mc2 the binomial theorem [(1+x)−1/2 ≈
1− x/2 for smallx] gives

E1 ≈ mc2

1∓ (1−mc2/T )

= T for minus sign
(maximum)

= mc2/2 for plus sign
(minimum).

(15)
So: for the annihilation in flight of a highly

relativistic e+, the maximum energy that oneγ
can take is the whole of the kinetic energy of the
e+, leaving a mere half of an electron’s rest energy
(≈ 0.26 MeV) for the other photon.

For the 200 MeV positron in the photograph
this means that, within measurement errors, all the
e+’s energy can go into one photon, with the other
photon having such a low energy that it would not
leave a track in the bubble chamber.
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Summary

An attempt has been made to put on record
a detailed, stand-alone discussion of a quite
extraordinary bubble chamber picture, containing:

• an unusual interaction—the annihilation of a
high energy positron in flight;

• evidence of several other exotic phenomena.

It is hoped that the information provided can be of
value to

• school teachers of more traditional courses,
by providing qualitative illustrations of basic
concepts such as conservation laws and
the emission of electromagnetic radiation by
accelerating charges;

• university teachers, by providing new illustra-
tive examples with a full treatment of the rel-
ativistic kinematics;

• good students wishing to read beyond their
syllabus.
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Appendix

Before tackling example 3, we introduce a labour-
saving device—what practising physicists call the
‘c = 1 convention’.

Exercise. While following the kinematics above,
you may have felt that thecs are a bit of a
nuisance! You may also have noticed thatms are
always multiplied by ac2 while ps are always
multiplied by ac. So, why not drop allcs from
the beginning and put them in at the end?!

Derive equation (12) withoutcs and then
verify, by putting them back in, that everything
has worked out consistently.
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�
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HHHHHHHj-θ1

E1 = p1

E2 = p2

E, p

γ1

γ2

e+

Figure 4. A momentum-vector triangle showing
the energies Ei and momenta pi of the two
photons γi , i = 1, 2, emerging from the annihilation
of a positron e+ of energy E and momentum p
with a stationary electron (not shown). The angle
θ1 gives the direction of γ1 with respect to p.

Solution to example 3

Using the ‘c = 1 convention’, energy conservation
gives

E +m = E1+ E2. (16)

Since we are going to equate values ofE2
2 as

before, this can be rewritten as

E2
2 = (E +m− E1)

2. (17)

Next we draw a vector diagram representing
p = p1+ p2 (figure 4).

Notice that, in the ‘c = 1 convention’, the
photon relationship ‘E = pc’ has become ‘E =
p’, wherep is the magnitude of the 3-momentum.

Using the cosine rule for the vector triangle

E2
2 = E2

1 + p2− 2pE1 cosθ1

= E2
1 + E2−m2− 2pE1 cosθ1. (18)

Equating values ofE2
2 from equations (17) and

(18), and subtractingE2 + E2
1 from both sides,

yields

m2+2mE−2EE1−2mE1 = −m2−2pE1 cosθ1

(19)
Rearranging and solving forE1:

E1 = m(E +m)
E +m− p cosθ1

. (20)

The largest and smallest values ofE1 correspond
to cosθ1 = 1 and−1, which occur forθ1 = 0◦

and 180◦ respectively.
Notice now that, if we multiplyms by c2 and

ps by c, we get equation (12), as set.
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