Consider a snooker ball of velocity \mathbf{w} making an elastic off-centred collision with a stationary ball of equal mass. After the collision, let the balls have velocities \mathbf{u} and \mathbf{v} respectively.

Momentum conservation: $\mathbf{w} = \mathbf{u} + \mathbf{v}$ (visualize as a vector triangle with \mathbf{w} longest).

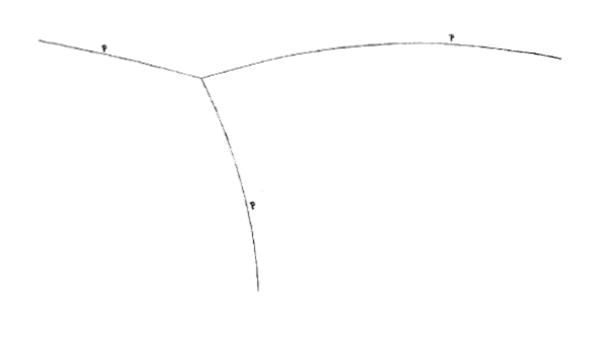
For an elastic collision, kinetic energy is conserved; so


$$\frac{1}{2}mw^2 = \frac{1}{2}mu^2 + \frac{1}{2}m_2v^2 \rightarrow \frac{w^2 = u^2 + v^2}{2}$$
.

This means that the triangle must be a right-angled triangle with \mathbf{w} as the hypoteneuse and with \mathbf{u} and \mathbf{v} at 90° to each other.

So when two equal masses collide elastically, they move off perpendicular to each other.

Here is an


example of an elastic collision of two protons in a bubble chamber.

$$p + p \rightarrow p + p$$

The projectile proton enters from the left and strikes a (more-or-less) stationary proton. The two outgoing protons emerge from the collision point at right-angles to each other.

(The fact that the angle is not exactly 90° is due to the fact that the incoming proton is relativistic.)

