A Simple Estimate
of the Mass
of the Positron

By Goronwy Tudor Jones

popular toy consisting of two identical steel pendulums demonstrates

that, in an elastic collision, a projectile can transfer all of its momentum
to a target of equal mass. The same is true for collisions between relativistic
elementary particles.

The excepticnal bubble chamber picture of Fig. 1 showing a collision between
a positron and a stationary electron enables the mass of the positron to be estimated
in a simple way—demonstrating the power and all-pervading nature of the laws
of energy and momentum conservation.

Several other esoteric phenomena (some not easy to show on their own)
manifest themselves in this picture: the existence of antimatter, pair-creation or
the materialization of a high-energy photon into an electron-positron pair; the
annihilation of a high-energy positron in flight; the Compton Effect.

What Is Particle Physics?

The aim of particle physics is to study the fundamental building blocks of
nature and the forces they exert on each other. The experimental side of this subject
consists of examining what happens when particles are made to collide at high
energies at accelerator centers such as CERN (the European Centre for Particle
Physics Research) in Geneva or Fermilab just outside Chicago.

In this article, we discuss in isolation a small part of the final state of a
high-energy neutrino interaction: a head-on collisicon of a positron and a stationary
electron, something that happens very rarely.

The Bubble Chamber

The bubble chamber™ is a detector that provides data about elementary
particle interactions in the form of photographs that are easy to interpret—and
beautiful in their own right. The dark lines in Fig. 1 are trails of tiny bubbles that
are created as charged particles force their way through the specially prepared
liquid of the bubble chamber—in this case a superheated (roughly 2:1) mixture of
neon and hydrogen.

As described previously,1 the tracks are curved by a magnetic field in which
the bubble chamber is placed. The curvature of a track can be measured to give
the momentum of the particle that produced the track:

p = (Bg)r (1

This tells us that for a given field B and charge ¢, the momentum p is
proportional to the radius of curvature r. (For simplicity, we are considering a
particle moving at right angles to the magnetic field.) This equation is valid in
both nonrelativistic and relativistic situations.
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Here, nature has been kind: all

charged particles that live long enough  “The information provided here, in addition to being of

to travel a measurable distance have a
charge equal or opposite to that on the

interest in its own right as a simple measurement of the

electrone (= 1.6 x 107 coulomb). Equa-  mass of the positron, can be of value to teachers of more

tion (1) then becomes, in units used by
nuclear and particle physicists,

traditional courses by providing illustrations of basic con-
cepts such as conservation laws and the emission of elec-

p = 0.3Br () tromagnetic radiation by accelerating charges.”

where p is measured in GeV/e, B in tesla,

and r in meters. For the Fermilab 15-ft-di-

ameter bubble chamber where this picture was taken, the
magnetic field of 3 T would give a 1 GeV/c track a radius of
curvature of about 1 m. (At the magnetic north pole, the
magnetic field at the Earth’s surface is 6.2 x 107 T)

The Bubble-Chamber Picture

Look at Fig. 1 as we describe what we see.

w Several lines coming in from the bottom are diverging;
they come from a neutrino interaction, way upstream of
the picture. So now we have a feeling for the direction of
motion. And the speed? Everything is moving with more
ot less the speed of light. The ion trails that developed into
bubble tracks were created in a few nancseconds.

m At several places, marked A, a low momentum negative
track (it curls to the right) can be seen, beginning on a track
of much higher momentum. These are electrons that have
been struck by the passing particle that is much more
massive than the electron,

Notice how these electron tracks spiral in, showing that
they lose their energy at a considerable rate as they travel.
This is in contrast to the massive particles that have struck
them. Apart from losing energy by creating bubbles, elec-
trons lose energy much more quickly by another process,
known as bremsstrahlung (braking radiation).

This process, which is a consequence of the fact that all
accelerated charges radiate,” is important for electrons be-
cause they have small masses. One can argue as follows: For
a particle of given charge, the amount of energy lost by
bremsstrahlung depends on its acceleration; the acceleration
is provided by the electric field due to the nuclei of the
medium through which the particle is moving; by Newton's
second law, the acceleration for a given force varies inversely
as the mass. So, since the next lightest charged particle after
the electron is the muon, which is over two hundred times
more massive, we do not expect much bremsstrahlung from
particles other than electrons (especially since it is the square
of the mass that counts).

The upshot of all this is that an electron is instantly
recognizable in our bubble chamber because its track will
spiral. (This would not be true for a liquid hydrogen

bubble chamber because the singly charged hydrogen
nuclei do not produce enough acceleration.)

At several points, marked B, a lone (spiraling} electron
can be seen. This is an electron that has been knocked out
of an atomn by a high-energy photon, or y-ray. The photon
does not leave a track because it is electrically neutral.
Such electrons are called Compton electrons. There are
several more in the picture. Can you find them?

There are several points, marked C (two special ones we
shall return to later are marked D and Q), from which two
spiraling tracks, one positive and one negative, are seen
to emerge with zero opening angle. These are high-energy
photons materializing, in the field of a nucleus, into a
positron-electron (¢” ¢”) pair. The positron is the antipar-
ticle of the electron.

The first thing to note is that the positron tracks look pretty
much like the electron tracks apart from curving in the
opposite direction: they leave trails of bubbles, they spiral;
there is nothing mystical about antimatter.

At P, a positron in flight annihilates with an electron. The
photon that is produced materializes at Q, which is ~ 10
cm away from P, along the line of flight.

This is a classic signal of a positron, but even bubble-
chamber physicists do not see them often; the positrons
usually slow down and stop before annihilating.

Now we come to another special feature of this picture,
and the main point of interest of this article. At the point
marked E, the positron track that left D seems to change
into a negative track of more or less the same curvature
(momentur). What has happened is that the positron has
made a head-on collision with an electron, transferring
what looks like all its momentum to the electron—sug-
gesting that the mass of the positron is equal to that of the
electron. Such an occurrence is very rare in bubble-cham-
ber physics.

We now discuss in detail the kinematics of this problem,

present the measurements of the curvatures of the tracks on
either side of the collision point E, and see what limit we can
set on the mass of the positron.

Fig. 1. (See facing page.) Part of a bubble-chamber plcture, Dark lines are trails of tiny bubbles created as charged particles force their
way through a tank of transparent fiquid enclosed in a powerful magnet. At E, the maln point of interest, a positive track curling to the
left seems to change Its sign. What |s happening Is that a positron collides head-on with a stationary electron and loses all (within
errors) Its momentum. This shows that {within errors) the positron has the same mass as the electron. (This picture, from neutrino
experiment E632 performed at the Fermilab 15-ft bubble chamber, was found at the University of Birmingham.)
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Fig. 2. Part of a popular toy known as Newton's Cradle.

Nonrelativistic Elastic Head-on Collisions

Figure 2 shows part of a coffee-table toy known as
Newton's Cradle. If the left (L} pendulum of mass m; is
pulled to one side and let go so that it collides with the
stationary right (R} one of mass mg = m,, the latter will rise
to the height from which the former was released, provided
the collision is elastic. We shall see that this follows from
momentum and energy conservation laws, which say that in
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such a collision all the momentum is transferred from the
projectile to the target.

If the initial and final speeds are denoted by u and v
respectively, momentum conservation gives

mguy +mgx 0 = mpv; + mpvg (3

and since, by definition, kinetic energy is conserved in an
elastic collision,

%ml_ui + -;—mR xQ? = %vai + -;-mRv?Q “)

For the equal mass situation we are considering at the mo-
ment, these equations reduce to U, = v tvp and
u? = vi+vi. Equating values of vi from each yields

L
2 _ : H .
Ve = U Ve which has two solutions:

m Vg = (; this corresponds to there being no collision; ball L
was not shot directly at ball R.

« Vg = uy; this, as anticipated, corresponds to a complete
transfer of L’s momentum to R.
Let us now investigate what fraction of its momentum a

mass m; (> mpy) can impart to one of mass mp. That it is less

" @w’r VONT You SEE., TeERSHOM —1F THE PARTICU:
'S Too SMALL AND 700 SHORT-LIVED 76DETELT’
WE CAR'T JUST TAKE 1T ON FAVTH THAT Youwe
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than the whole can be appreciated by thinking about the case
of L being much more massive than R.
If we define A = mR/mL then Egs. (3) and (4) can be

rewritten:

Vi o=l - Avp (3
and

vi = up -G (6)
Equating values of vi we get

M

Yp = I‘:—IHL

Let us now use this formula to ask: If the mass of the
projectile L is n times that of target R, what fraction of iis
momentum can be transferred to R?

From Eq. (7} we see that the speed with which R moves
is given by

2 (8)
VR TT M

-+1
n

The momentum of Ris then given by multiplying by its mass,

s

-
Motnentum of struck ball =

my . _2n

n nt+]

2
Xy = nTlx muy (9)

So, projectiles of 2, 3, and 5 times the mass of a target will,
in a head-on elastic collision, transfer only %4, 14, and V4 of
their momenta respectively. Note that this result applies, no
matter what the energy of the projectile. The same is not true
for the relativistic case. Before moving on to this, let us
remind ourselves of the problem in hand.

Details of the Experimental Measurement

The bubble-chamber picture of the positron transferring
all its momentum to the stationary electron suggests, if non-
relativistic mechanics is any guide, that the positron mass
equals that of the electron. The first thing we need to show is
that a proper relativistic treatment of the collision would lead
to the same inference. It will be shown to be so.

Then we have to worry about reality—we cannot measure
momenta without errors. In bubble-chamber picture analysis,
the momentum of a track is obtained by measuring, on at least
two views so as to be able to reconstruct in three dimensions,
the coordinates of several points along a track. Because of
the measurement errors, these points will not lie on a per-
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fectly smooth curve. The curve that best fits through these
points is then calculated, together with errors that give a feel
for the spread of curves that could be considered consistent
with the measured points. The radius of curvature (with error)
of this curve gives via Eq. (2), the momentum of the track
{with error).

In principle this is straightforward. In practice it is a
complicated procedure. For one thing, the particles lose
energy as they force their way through the bubble-chamber
liquid; so they are more curved at their ends than they are at
their beginnings; this must be taken into account.

In the case of light electrons, curvature changes due to
bremsstrahlung are unpredictable and often quite severe,
making a momentum measurement particularly difficult.

Using the current state-of-the-art fitting program from
CERN, our measurements for the e approaching point E on
the picture, and the e~ leaving it, give 54 + 15 and 53 £ 13
MeV/c respectively. (Systematic errors are negligible in
comparison with these large statistical errors, forced upon us
by the short lengths of track that can sensibly be used for
measurement, typically 3 ¢m.)

The fraction of the positron's momentum transferred to
the electron is then 0.98 + 0.37, where the errors have been
added in quadrature.
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Relativistic Elastic Head-on

. —e—>
Collisions
Consider a projectile of mass M, en- M. Em, pu
ergy E,y, and momentum p,, making a
head-on elastic collision with an electron BEFORE

of mass m, ( < M). Let the corresponding
final state enetgies and momenta be E AJ;,

pL ,and E, p, as shown in Fig. 3. (Since

we are considering a head-on collision,
momentum is a one-component vector.)
Momentum and energy conservation give

w = Pt pe (10)

Epy+me? = \/p”c2+Mc +\/p,c + mict an
Eliminating p;!we get

Ep+ mec? -V plc? + mic* -\/(p — pelc® + M (12)

Squaring and then subtracting pﬁczfrom both sides gives

{(Em mecz)2 + m%c4 —2Ey+ mecz) ¥ pgc2 + mgc4 =
- 2pMp,c2 + Mec* (13)

We now have a fair bit of algebra ahead of us. This can be
simplified by noticing how ¢ appears in Eq. (13): there is always
a ¢ multiplying a momentum, and a ¢® multiplying a mass. Let
us therefore forget these c’s for now, and bring them back at the
end. (This is what particle physicists call the ¢ = 1 convention.)

Notice: under this convention, the relativistic expression
that relates the rest mass mg of a patticle to its energy and
momentum, E° = p2 ¢t + mol ¢*, reduces to E* = p2 +mg2,
it looks strange at the moment, but don’t worry, we know
where the ¢'s should be and will put them back.

We now have

(EM+m,)2+ mg —2(Ep + me) ¥ p% + mg =

= 2ppPpe + M (14)

Evaluating the square, using EL- p2 = M, rearranging

M
and dividing by 2, we get

/ 15
me + Epymg + pype = (Epyy t me) + me (15

Squaring, removing terms appearing on both sides of the
equation, and rearranging, we get

* ——> —_—r—>

m, M, EL, rls

AFTER

me, E., p.

Fig. 3. A projectile of mass M, energy Ex 8nd momentum puw makes a head-on collislon
with an electron of mass m,. In the final state, the energles and momenta are given by

Els, pla, and Ea, pe.

Pe (DagDe + 2ppgM2 + 2Epmepyy - Expe -
mipe - 2Epgmepe) = 0 (16)

(The solution p, = 0 corresponds to there being no colli-
sion—the momentum conservation equation does not explic-
itly say that the projectile was fired straight at the electron.)

Solving for p, we get, after making use of Eﬁ{ - pil = Mz,

2pyme (Eye + mg) (17
pe = S ——
M+ mk v 2E, m,

Putting the ¢’s back in we now have an expression for the

fraction of the projectile’s momentum that is imparted to the
electron:

De. EM + MeC (18)
Py M M2g4
EM * 2 (1 * 2 4)
el

Writing M ~ nm we get the relativistic version of Eq. (9):

De Ejpp + mec? (19)
R
Pu Ey+ n 2+ lm,c2

‘We notice immediately that, for the equal-mass case (n = 1),
the target picks up all the projectile’s momentum, just as we

Py nt 1

However, for M > m,, the fraction imparted depends on
the encrgy E,, of the projectile. Figure 4 shows a plot of this
fraction f as a function of » for a projectile of energy E,, = 54
MeV (so long as the positron is highly relativistic and its
energy is then given by E,, = pc, with p = 54 MeV/c).

The horizontal dotted line is drawn at f = 0.24, two
standard deviations from the measured value of 0.98  0.37.
(See last sentence on p. 99.) This meets the curve at n = 26,
In the jargon of the statistician, we can then say that, at the
05% confidence level, the mass of the positron is less than
26 electron masses.

This method of seeing that the positron has a low mass
(compared with the proton, say) has the virtue of clarity and
beauty, but it falls a long way short of the current best estimate

found for the non-relativistic case [_P_e = —2—-]



of the mass difference between the e” and the ", Steven Chu
et al.* measured with very high accuracy the frequency of
radiation emitted from positronium (an ¢' ¢ bound state), and
quote

| me+ — me-| < 4% 107 (20)
at a 90% confidence level.

Finally: What happened to the positron that
was stopped by the electron?

If, indeed, the positron had been stopped dead in the
collision, it would then have been annihilated with an elec-
tron to produce two 0.511-MeV photons, back to back, just
as in Positron Emission Tomography (PET) scanners in hos-
pitals. Such low-energy photons cannot materialize into elec-
tron-positron pairs; this would violate energy conservation.
However, our measurement errots allow the positron to keep
~ 10 MeV in the bubble chamber, which could be passed on
to the annihilation photons. If we look at Fig. 1 very carefully,
we see two pieces of evidence that could result from these
annihilation photons, marked X and Y on the picture.

» XisaCompton electron with a momentumof 7+ 2 MeVjc
that maintains its position relative to the collision point E
on all camera views. It may reasonably be interpreted as
having been produced by one of our annihilation photons.

» Y looks like an even better candidate, a materializing e*e”
pair pointing back towards E. Unfortunately, it does not
maintain its orientation relative to E and is therefore
spurious. Sad!

The information provided here, in addition to being of
interest in its own right as a simple measurement of the mass
of the positron, can be of value to teachers of more traditional
courses by providing illustrations of basic concepts such as

Fraction of projectile momentum transferred to
electron vs projectile’s mass in electron masses.
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conservation laws and the emission of electromagnetic radi-
ation by accelerating charges.
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